Silk Pavillion | Andrea Fiore - architecture & design
I’m an architect & maker designer, totally curious and multidisciplinary lover. Two years teaching assitant in architecture technology at University of Naples Federico II. Interior & graphics designer from 2009. Home is Napoli (Italy) the harmony of the contraries. Bicycle religious, wannabe biblioholic and passionate for all-scale design. I'm specialized in bicylce design, lightweight timber structures and parametric structural design.
architecture, architettura, architect, permaculture design, permaculture, permacultura, progettazione, architetto, design, designer, maker design, maker designer, maker, parametric design
674
post-template-default,single,single-post,postid-674,single-format-video,ajax_leftright,page_not_loaded,smooth_scroll,,qode-child-theme-ver-1.0.0,qode-theme-ver-3.9,wpb-js-composer js-comp-ver-5.4.5,vc_responsive

Blog

Silk Pavillion

in Blog, Design, Makers, Videos

The Silk Pavilion explores the relationship between digital and biological fabrication on product and architectural scales.
Research and Design by the Mediated Matter Research Group at the MIT Media Lab in collaboration with Prof. Fiorenzo Omenetto (TUFTS University) and Dr. James Weaver (WYSS Institute, Harvard University). Mediated Matter researchers include Markus Kayser, Jared Laucks, Carlos David Gonzalez Uribe, Jorge Duro-Royo and Neri Oxman (Director).

Overall density variation was informed by the silkworm itself deployed as a biological “printer” in the creation of a secondary structure. A swarm of 6,500 silkworms was positioned at the bottom rim of the scaffold spinning flat non-woven silk patches as they locally reinforced the gaps across CNC-deposited silk fibers. Following their pupation stage the silkworms were removed. Resulting moths can produce 1.5 million eggs with the potential of constructing up to 250 additional pavilions.

Affected by spatial and environmental conditions including geometrical density as well as variation in natural light and heat, the silkworms were found to migrate to darker and denser areas. Desired light effects informed variations in material organization across the surface area of the structure. A season-specific sun path diagram mapping solar trajectories in space dictated the location, size and density of apertures within the structure in order to lock-in rays of natural light entering the pavilion from South and East elevations. The central oculus is located against the East elevation and may be used as a sun-clock.

Parallel basic research explored the use of silkworms as entities that can “compute” material organization based on external performance criteria. Specifically, we explored the formation of non-woven fiber structures generated by the silkworms as a computational schema for determining shape and material optimization of fiber-based surface structures.

The primary structure was created of 26 polygonal panels made of silk threads laid down by a CNC (Computer-Numerically Controlled) machine. Inspired by the silkworm’s ability to generate a 3D cocoon out of a single multi-property silk thread (1km in length), the overall geometry of the pavilion was created using an algorithm that assigns a single continuous thread across patches providing various degrees of density.



Creative Commons License Except where otherwise noted, content on this site is property of Andrea Fiore and photos by Daniele Lancia, all licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License